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Abstract. The network flow theory and algorithms have been developed on the assumption that
each arc flow is controllable and we freely raise and reduce it. We however consider in this paper
the situation where we are not able or allowed to reduce the given arc flow. Then we may end up
with a maximal flow depending on the initial flow as well as the way of augmentation. Therefore the
minimum of the flow values that are attained by maximal flows will play an important role to see
how inefficiently the network can be utilized. We formulate this problem as an optimization over the
efficient set of a multicriteria program, propose an algorithm, prove its finite convergence, and report
on some computational experiments.
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1. Introduction

Considering the maximum flow problem, we usually take it for granted that each
arc flow is controllable, i.e., we freely increase and decrease it as long as the
conservation equations and capacity constraints are kept satisfied. However, in the
situation where we are not able or allowed to reduce the given arc flow, we may fail
to reach a maximum flow and get stuck in an undesired maximal flow. With such
restricted controllability, we may end up with different maximal flows depending
on the initial flow as well as the way of augmentation. Therefore the minimum of
the flow values that are attained by maximal flows will play a prominent role in
evaluating how inefficiently the network can be utilized.

Let (V , s, t, E, ∂+, ∂−, c) denote a network of node set V with two designated
nodes source s and sink t , arc set E, incidence functions ∂+ and ∂−, and a nonneg-
ative capacity ch for each arc h, where ∂+h is the node that arc h leaves and ∂−h is
the node that arc h enters. A vector x = (. . . , xh, . . . ) of |E|-dimension is said to
be a feasible flow if it satisfies the conservation equations and capacity constraints:

∑
∂+h=i

xh =
∑
∂−h=i

xh for all node i ∈ V \ {s, t}

0 ≤ xh ≤ ch for all h ∈ E.
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Defining the |V \{s, t}|×|E| matrix A = [aih]i∈V \{s,t}
h∈E , called the incidence matrix,

by

aih =




+1 if ∂+h = i

−1 if ∂−h = i

0 otherwise,

(1.1.1)

the conservation equation is simply written as Ax = 0. A feasible flow x is said to
be a maximal flow if there is no feasible flow x′ such that x′ ≥ x and x′ �= x. The
flow value, denoted by φ(x), of feasible flow x is given by

φ(x) =
∑
∂+h=s

xh −
∑
∂−h=s

xh.

Then the above problem of finding the minimum flow value of maximal flows,
which was first raised by Shi and Yamamoto [26], is written as:

(mmF)

∣∣∣∣∣ minimize φ(x)

subject to x is a maximal flow.

Note that this problem encompasses the minimum maximal matching problem,
which is known to be NP -hard, e.g., [12], and is closely related to the uncontrol-
lable flow problem raised by Iri [16, 18]. Figure 1 shows an example of Iri [17]
which should contrast the minimum maximal flow with the maximum flow. The
number attached to each arc denotes the arc capacity. The maximum flow value
grows as the arc capacity c increases, while the minimum maximal flow value does
not.

The purpose of this paper is to formulate Problem (mmF ) as a linear optim-
ization problem over the efficient set of a multicriteria program and to propose
an algorithm. The algorithm is mainly based on the local and global optimization
techniques and exploits the integrality property of network flows.

In the next section some known results on the multicriteria program and the
linear optimization over the efficient set are presented. In Section 3 local and global
optimization techniques are discussed. In Section 4, combining these techniques
and exploiting the network structure, we propose an algorithm for Problem (mmF )
and show its finite convergence. In Section 5 are reported some computational
experiments. Finally, Section 6 contains some conclusions.

2. Preliminaries on Multicriteria Program

Throughout this paper Rk denotes the set of k-dimensional real column vectors,

Rk
+ = { x | x ∈ Rk; x ≥ 0 } and Rk

++ = { x | x ∈ Rk; x > 0 }.
Rk denotes the set of k-dimensional real row vectors, and Rk+ and Rk++ are defined
in the similar way. We use e and 1 to denote a row vector and a column vector
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Figure 1. Maximum Flow vs. Minimum Maximal Flow

of ones, respectively, and ek to denote the kth unit row vector of an appropriate
dimension.

Definition 2.1. Let C be a p × n matrix and X be a polyhedral set of Rn defined
as X = { x | x ∈ Rn+;Dx = b }, where D is an m × n matrix and b ∈ Rm. Then
we call the vector maximization problem

(MC)

∣∣∣∣∣ vector maximize Cx

subject to x ∈ X

a linear multicriteria program. We assume that X is bounded and denote the set of
its vertices (extreme points) by XV . A point x ∈ Rn is said to be an efficient point
of Problem (MC) if x ∈ X and there is no point x′ ∈ X such that

Cx′ ≥ Cx and Cx′ �= Cx.

We denote the set of efficient points of (MC) by XE .

The linear optimization over the efficient set is the following problem:

(P )

∣∣∣∣∣ minimize dx

subject to x ∈ XE,
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where d ∈ Rn.
Let (MC) be defined for C = I , the identity matrix of dimension |E|, and

the set of feasible flows X = { x | x ∈ R|E|;Ax = 0; 0 ≤ x ≤ c }, and let dx =
φ(x). Then the minimum maximal flow problem (mmF ) reduces to Problem (P ).
In this case Problem (MC) has the criteria as many as the arcs of the network,
hence the algorithms, e.g., Benson [2, 3] and Thach et al. [28], that exploit the
low dimensionality of p would not work efficiently. For the details of Problem (P )
and the algorithms the readers should refer to An et al. [1], Benson and Lee [5],
Benson and Sayin [6], Dauer and Fosnaugh [9], Horst and Thoai [14], Muu [20],
Sayin [24], Thoai [30, 31], White [33], Yamada et al. [34], and Yamamoto [35].

We introduce several well-known results about Problem (P ), whose proofs
can be found in, for example Benson [4], Sawaragi et al. [25], Steuer [27], and
White [32]. We will outline some of the proofs to make this paper self-contained.

Theorem 2.2.

XE =
{
x

∣∣∣∣ x ∈ X; there is a λ ∈ Rp++ such that
λCx ≥ λCx′ for all x′ ∈ X

}
. (2.2.1)

Furthermore, there is an M > 0 such that Rp++ above can be replaced by the
(p − 1)-dimensional simplex defined by

# = { λ | λ ∈ Rp+;λ ≥ e;λ1 = M }. (2.2.2)

Proof. The proof of (2.2.1) could be found in, e.g., Corollary 1.2 of Chapter 4 in
White [33], Theorem 9.6 in Steuer [27]. For the sake of further discussion we will
however outline the proof. If x̄ ∈ X maximizes λCx over X for some λ ∈ Rp++,
x̄ is clearly in XE . Suppose x̄ ∈ XE and let G be an n × n diagonal matrix whose
ith diagonal element gii is defined by

gii =
{

0 if x̄i > 0

1 if x̄i = 0.

Then the system

Cu ≥ 0;Cu �= 0;Du = 0;Gu ≥ 0

has no solution u ∈ Rn. Applying Tucker’s alternative theorem (see for example
Mangasarian [19]), we see that

λC + µD + νG = 0

for some λ ∈ Rp++, ν ∈ Rn+. Clearly for any x ∈ Rn

λC(x̄ − x) + µD(x̄ − x) + νG(x̄ − x) = 0

holds. Since D(x̄−x) = 0 and G(x̄−x) ≤ 0 for x ∈ X, we obtain λC(x̄−x) ≥ 0,
meaning that x̄ maximizes λCx over X. This yields (2.2.1).
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Next we will outline the proof of the fact that # defined by (2.2.2) can replace
Rp++ in (2.2.1). By (2.2.1) XE is the union of finitely many faces, say F 1, . . . , FL

of X such that F* is the optimum set of maximizing λ*Cx over X for some λ* ∈
Rp++. Let α* = 1/(mini=1,...,p λ*i) and M = max*=1...,L α*(λ*1), where 1 is the
p-dimensional column vector of ones. Then for * = 1, . . . , L (M/λ*1)λ* lies in #

defined by (2.2.2), and F* remains the optimum set of maximizing (M/λ*1)λ*Cx
over X.

As seen in the proof, the set XE is a union of several faces of X. Furthermore we
have the following theorem, for whose proof see Theorem 9.19 and Theorem 9.23
in Steuer [27], Theorem 3.31 in Sawaragi et al. [25], and Naccache [21].

Theorem 2.3. The set XE is a connected union of several faces of X. Any two
vertices in XE are connected by a path of efficient edges, where an efficient edge is
an edge of X contained in XE .

This theorem implies the possibility of reaching any efficient vertex from any
given efficient vertex by a series of pivot operations. This observation forms the
foundation of the Adjacent Vertex Search Procedure, which will be explained in
the next section.

Lemma 2.4. Let x = (xB, xN) be a basic feasible solution of X and let D =
[DB,DN ] and C = [CB,CN ] be the partitions of D and C corresponding to the
basic part xB and the nonbasic part xN of x, respectively. Let cj and dj be the
columns of CN and DN , respectively, corresponding to a nonbasic variable xj .
The edge obtained by increasing xj is an efficient edge if and only if λ(CN −
CBD

−1
B DN) ≤ 0 and λ(cj − CBD

−1
B dj ) = 0 for some λ ∈ #. Furthermore the

condition is equivalent to

max { λ(cj − CBD
−1
B dj ) | λ ∈ #;λ(CN − CBD

−1
B DN) ≤ 0 } = 0.

Thus by solving the above linear programming we can find an efficient edge in-
cident to the efficient vertex. We also see the following theorem about the location
of an optimum solution of Problem (P ).

Theorem 2.5. There is an optimum solution of (P ) in the vertex set XV of X.

Proof. As in the proof of Theorem 2.2, let F 1, . . . , FL be the faces of X that
constitute XE . Then Problem (P ) reduces to the family of problems

(P *)

∣∣∣∣∣ minimize dx

subject to x ∈ F*,

whose optimum solution is located in the vertex set F*
V of F* due to the linearity of

dx. Since F* is a face of X, F*
V is contained in XV . This completes the proof.
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Hence we have only to search in XV for an optimum solution of (P ), however the
enumeration of XV should be used only as a last resort for solving the problem.

3. Local and Global Optimization Techniques

In this section we will explain a local technique Adjacent Vertex Search Procedure
and a global technique Nonadjacent Vertex Search Procedure for Problem (P ).

The algorithms for the optimization over the efficient set proposed by Philip [22],
Ecker and Song [10], Fülöp [11] and Bolintineanu [7] are mainly based on the
technique of moving from an efficient vertex to an efficient neighbor with a smal-
ler objective function value via an efficient edge. As shown in Theorem 2.3, the
efficient set XE is connected, and all the efficient vertices are connected by paths
of efficient edges. Thus, starting from any given efficient vertex, we could reach an
optimum solution of Problem (P ) by a series of pivot operations in theory. How-
ever, we cannot decrease the objective function value monotonically along the path
that we trace, i.e., we will be eventually caught by a non-optimum efficient vertex
none of whose efficient neighbors have a smaller objective function value. We see
that the efficient vertex is a local minimum point as in the following Lemma 3.1,
which can be found in Bolintineanu [7].

Lemma 3.1. Let x ∈ XV ∩XE and suppose that no efficient vertices linked to x by
an efficient edge have a smaller objective function value than x. Then x is a local
minimum point for (P ).

For x, x′ ∈ XV let [x, x′] denote the edge connecting x and x′. For x ∈ XV ∩XE

let

NE(x) = { x′ | x′ ∈ XV ∩ XE; [x, x′] ⊆ XE },
i.e., the set of efficient vertices linked to x by an efficient edge. If a point, say x0, of
XV ∩XE has an empty neighborhood NE(x

0), XV ∩XE is a singleton {x0}, which
is clearly an optimum solution of (P ).

Given x0 ∈ XV ∩ XE with NE(x
0) �= ∅ the Adjacent Vertex Search Procedure,

which will be abbreviated by AVS Procedure, goes as follows.

ADJACENT VERTEX SEARCH (AVS) PROCEDURE

〈〈Initialization〉〉
Set k = 0.
〈〈Step k〉〉
〈k1〉 If { x | x ∈ NE(x

k); dx < dxk } �= ∅, choose xk+1 from this set, k = k + 1
and go to Step k.

〈k2〉 Otherwise, set v = xk and stop.
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Note that the procedure generates a sequence of distinct efficient vertices x0, x1,

. . . , xk with decreasing objective function values, i.e., dx0 > dx1 > · · · > dxk .
As was seen in Lemma 3.1, the efficient vertex v obtained by the AVS Procedure

is only a local minimum solution. We need to see if there is an efficient point whose
objective function value is less than that of v, and to find one if any. Let

H = X ∩ { x | dx = dv }
and let HE be the set of efficient points of vector max{Cx | x ∈ H }. Then from
the relation H ⊆ X we see

XE ∩ H ⊆ HE.

Based on this observation the algorithms in the papers mentioned at the beginning
of this section enumerate the vertices of HE to find an efficient edge [u, u′] of X
such that min{du, du′} < dv. Since the dimension of H is usually less than that of
X by only one, the enumeration is very costly and deteriorates the efficiency of the
algorithms.

Now we explain the global technique, which was originated by Phong and
Tuyen [23], of determining if there is an efficient point x with dx ≤ α for a given
α ∈ R, where the pair of functions σ and τα plays a crucial role.

Definition 3.2. For λ ∈ Rp++ and α ∈ R let

σ (λ) = max { λCx | x ∈ X }
τα(λ) = max { λCx | x ∈ X; dx ≤ α }.

Lemma 3.3. (i) σ (·) and τα(·) are piecewise linear positively homogeneous con-
vex functions on Rp++.

(ii) For λ ∈ Rp++

σ (λ) = max { λCv | v ∈ XE ∩ XV }
τα(λ) = max{ λCv | v is an efficient vertex of X ∩ { x | dx ≤ α } }.

(iii) τα(λ) ≤ σ (λ) for any λ ∈ Rp++.

(iv) τα(λ) is a nondecreasing function in α ∈ R.

Proof. All statements are readily seen from the theory of linear programming.

Phong and Tuyen [23] showed the following theorem, whose proof will be given
to make this paper self-contained.

Theorem 3.4. XE ∩ { x | dx ≤ α } �= ∅ if and only if σ (λ) = τα(λ) for some
λ ∈ #.
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Proof. Suppose x̄ ∈ XE ∩ { x | dx ≤ α }, then σ (λ̄) = λ̄Cx̄ for some λ̄ ∈ #.
Since dx̄ ≤ α, λ̄Cx̄ ≤ τα(λ̄), which is less than or equal to σ (λ̄). Therefore
σ (λ̄) = τα(λ̄).

Suppose σ (λ̄) = τα(λ̄) at λ̄ ∈ # and let x̄ be a point that attains max{ λ̄Cx |
x ∈ X; dx ≤ α } = τα(λ̄). Then, since σ (λ̄) = τα(λ̄), x̄ maximizes λ̄Cx over X,
meaning x̄ ∈ XE .

Note that the point x̄ obtained as a solution of max{ λ̄Cx | x ∈ X; dx ≤ α }
is in general not a vertex of X. However, the minimal face of X that contains
x̄ lies entirely in XE and can be easily identified. Then minimizing dx over the
face would yield an efficient vertex of X satisfying dx ≤ α. In this way, by the
additional computation if necessary, we always find an efficient vertex of X when
there is an efficient point satisfying dx ≤ α.

In the sequel we restrict σ and τα on #. Let epi σ denote the epigraph of σ :
# → R, i.e.,

epi σ = { (λ, µ) | λ ∈ #;µ ∈ R;µ ≥ σ (λ) }
= { (λ, µ) | (λ, µ) ∈ # × R;µ − λCv ≥ 0 for all v ∈ XV ∩ XE }.

Then by the piecewise linear convexity of σ and τα we have

Lemma 3.5. σ (λ) = τα(λ) for some λ ∈ # if and only if there is a vertex (λ, µ)

of epi σ such that µ = τα(λ).

Proof. Since the ‘if’ part is trivial, we show the ‘only if’ part. Note first that the
recession cone of epi σ is {0} × R+ due to the boundedness of # and hence any
point (λ, µ) in epi σ is a convex combination of its vertices plus a vector (0, θ) for
some θ ≥ 0. Let (λ*, µ*) for * = 1, . . . , L be vertices of epi σ and suppose

µ* > τα(λ*)

holds for * = 1, . . . , L. Let λ be an arbitrary point of #, then (λ, σ (λ)) ∈ epi σ ,
and hence

λ =
∑
*

θ*λ* and σ (λ) =
∑
*

θ*µ* + θ

for some θ ≥ 0 and θ* ≥ 0 with
∑

* θ* = 1. Then by the convexity of τα and the
assumption we have

σ (λ) ≥
∑
*

θ*µ* >
∑
*

θ*τα(λ*) ≥ τα(λ).

This completes the proof.

Figure 2 shows σ and τα on #. Since # is a bounded set of points λ satisfying
λ1 = M, their positive homogeneity is not observed in this figure.
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Figure 2. σ and τα .

For a nonempty subset W of XV ∩ XE let

σW(λ) = max { λCv | v ∈ W }
for λ ∈ #. Then

σW(λ) ≤ σ (λ)

for any λ ∈ # or

epi σ ⊆ epi σW,

i.e., epi σW is a polyhedral outer approximation of epi σ . We readily have the
following corollary from Theorem 3.4 and the piecewise linearity of σW(λ).

Corollary 3.6. (i) If τα(λ) < σW(λ) for all λ ∈ #, then XE∩{ x | dx ≤ α } = ∅.

(ii) τα(λ) ≥ σW(λ) for some λ ∈ # if and only if there is a vertex (λ, µ) of epi σW
such that µ ≤ τα(λ).

Proof. Since σW(λ) ≤ σ (λ) for every λ ∈ #, Theorem 3.4 yields (i).
The ‘if’ part of (ii) is trivial and the ‘only if’ part could be seen in an analogous

way as in the proof of Lemma 3.5. We will, however, sketch the proof.
Since the recession cone of epi σW is {0} × R+, any point (λ, µ) in epi σW is a

convex combination of its vertices plus a vector (0, θ) for some θ ≥ 0. Let (λ*, µ*)

for * = 1, . . . , L be vertices of epi σW and suppose

µ* > τα(λ*)
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holds for * = 1, . . . , L. Let λ be an arbitrary point of #, then (λ, σW(λ)) ∈ epi σW ,
and

λ =
∑
*

θ*λ* and σW(λ) =
∑
*

θ*µ* + θ

for some θ ≥ 0 and θ* ≥ 0 with
∑

* θ* = 1. Then by the convexity of τα and the
assumption we have

σW(λ) ≥
∑
*

θ*µ* >
∑
*

θ*τα(λ*) ≥ τα(λ).

This completes the proof.

This corollary means that we can check whether τα(λ) = σW(λ) at some λ ∈ #

by evaluating τα(λ) at vertices (λ, µ) of epi σW . If τα(λ) < µ for every ver-
tex (λ, µ), we conclude that τα < σW , and hence XE ∩ { x | dx ≤ α } = ∅ by
Corollary 3.6. Otherwise, i.e., we have found a vertex (λ, µ) with τα(λ) ≥ µ.
Two possible cases occur. If σ (λ) ≤ µ, implying σ (λ) = µ = τα(λ), we see
that XE ∩ { x | dx ≤ α } �= ∅ by Theorem 3.4. As shown in its proof and the
statement following it, we will obtain a point of XV ∩ XE ∩ { x | dx ≤ α } by
solving max{ λCx | x ∈ X; dx ≤ α } with additional computation if necessary.
If σ (λ) > µ, a vertex v of X that attains max { λCx | x ∈ X } is not in W . See
Figure 2. Then W is augmented by this vertex v to make a better underestimation
σW∪{v} of σ .

The NVS Procedure starts with given α ∈ R, ∅ �= W0 ⊆ XV ∩ XE , and the
vertex set V0 of epi σW0 .

NONADJACENT VERTEX SEARCH (NVS) PROCEDURE

〈〈Initialization〉〉
Set k = 0.
〈〈Step k〉〉
〈k1〉 If τα(λ) < µ for all (λ, µ) ∈ Vk, then stop. Otherwise, go to Step k2.

〈k2〉 Choose (λk, µk) ∈ Vk such that τα(λk) ≥ µk and evaluate σ (λk).

〈k2.1〉 If σ (λk) ≤ µk, then solve max { λkCx | x ∈ X; dx ≤ α } obtaining w ∈
XV ∩ XE ∩ { x | dx ≤ α } and stop.

〈k2.2〉 Otherwise, solve max { λkCx | x ∈ X } obtaining vk ∈ XV ∩ XE . Set
Wk+1 = Wk ∪ {vk} and Vk+1 be the vertex set of epi σWk+1 . Set k = k+ 1
and go to Step k.

Theorem 3.7. The above procedure terminates after a finite number of augment-
ations of Wk and either provides a point w of XV ∩ XE ∩ { x | dx ≤ α } or shows
that XE ∩ { x | dx ≤ α } is empty.
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Proof. When the procedure stops at Step k1, we see that τα < σWk
≤ σ and hence

XE ∩ { x | dx ≤ α } is empty.
When the procedure stops at Step k2.1, we have

σ (λk) ≤ µk ≤ τα(λk),

implying σ (λk) = τα(λk). Then w is an efficient vertex satisfying dw ≤ α. We
show that vk in Step k2.2 does not belong to Wk. Note that (λk, µk) ∈ Vk ⊆
epi σWk

implies σWk
(λk) ≤ µk, and by the choice of vk , λkCvk = σ (λk). Then

λkCvk > σWk
(λk), which means that vk �∈ Wk . Therefore W0 ⊂ · · · ⊂ Wk ⊂ Wk+1,

all of which are contained in the finite set XV ∩ XE . This yields the finiteness of
the procedure.

Note that when a set of a single point, say v, is chosen as W0, epi σW0 is simply
written as

epi σW0 = { (λ, µ) | λ ≥ e;λ1 = M;µ − λCv ≥ 0 }
and has p vertices, all of which are easily computed. The main technique used in
the procedure is generating the vertex set of epi σWk+1 from that of epi σWk

. Note
first that epi σWk

is represented by finitely many linear inequalities each of which
corresponds to a point of Wk :

epi σWk
= { (λ, µ) | λ ≥ e;λ1 = M;µ − λCv ≥ 0 for v ∈ Wk }.

Suppose that we have known the vertex set Vk of epi σWk
, and we find a vertex

vk of X by maximizing λkCx over X in Step k2.2. This vertex will add an in-
equality µ − λCvk ≥ 0, which cuts off the vertex (λk, µk) of epi σWk

. To generate
the vertex set of epi σWk+1 we have only to generate the vertex set of (epi σWk

) ∩
{ (λ, µ) | µ − λCvk = 0 }. There have been proposed a number of algorithms for
this purpose, e.g., Horst et al. [13], Chen et al. [8], and Thieu et al. [29]. See also
Section 4.2, Chapter II of Horst and Tuy [15].

4. Minimum Maximal Flow Problem

The minimum maximal flow problem (mmF) introduced in Section 1 is a linear op-
timization problem over the efficient set of (MC) with an |E|× |E| identity matrix
as C and the set of feasible flows as X, i.e., X = { x | x ∈ R|E|;Ax = 0; 0 ≤ x ≤ c }.
A maximal flow of (mmF ) corresponds to an efficient point of (MC). We refer to
a maximal flow that is a vertex of X as an extreme maximal flow. We assume
hereafter that the capacity ch is a nonnegative integer for every edge h ∈ E. By
the network structure and the integrality of the capacities, we see that the object-
ive function takes an integral value at each extreme maximal flow as well as an
optimum solution of (mmF ). Then we see
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Lemma 4.1. The AVS Procedure, when applied to Problem (mmF), generates a
sequence of extreme maximal flows with decreasing integral objective function
values.

Let v be the extreme maximal flow obtained by the AVS Procedure. Then dv is
an integer and there is a maximal flow x with dx ≤ dv−1 if and only if v is not an
optimum solution. Therefore the NVS Procedure with α = dv − 1 determines if v
is optimum, and if not, it finds an extreme maximal flow with an objective function
value not greater than dv − 1.

ALGORITHM FOR (mmF)

〈〈Initialization〉〉
Find an extreme maximal flow w0. If NE(w

0) is empty, stop with w0 as an optimum
solution. Otherwise, set ν = 1, 70 = {w0} and go to Iteration ν.

〈〈Iteration ν〉〉
〈ν1〉 Apply the AVS Procedure to Problem (mmF) starting with x0 = wν−1, and

let vν be the extreme maximal flow obtained. Set αν = dvν − 1 and go to
Step ν2.

〈ν2〉 Let W0 = 7ν−1 and apply the NVS Procedure for α = αν . If XE∩{ x | dx ≤ αν }
is empty, stop with vν as an optimum solution.

〈ν3〉 Otherwise, set wν be the extreme maximal flow found by the procedure such
that dwν ≤ αν , set 7ν be the subset Wk of XV ∩ XE last generated by the
procedure, set ν = ν + 1 and go to Iteration ν.

Suppose that we have seen ταν (λ) < µ at a vertex (λ, µ) of epi σ7ν
. Since

ταν+1(λ) ≤ ταν (λ)

from (iv) of Lemma 3.3, this vertex can and should be eliminated from further
consideration.

Theorem 4.2. The above algorithm terminates within dw0 of iterations.

Proof. Clearly

dw0 ≥ dv1 > · · · ≥ dvν > dwν ≥ dvν+1 > · · · ,
that implies together with the integrality of the objective function value that

0 ≤ dwν ≤ dw0 − ν.

Therefore the algorithm iterates at most dw0 times.
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As stated in Theorem 2.2, the set # could replace Rp++ if a sufficiently large
M is chosen. We will show that |E|2 suffices as M. Now let x̄ ∈ R|E| be a given
maximal flow and let F = { h | h ∈ E; x̄h = ch } and F = E \F . Note that F �= ∅.
We refer to a directed path from node i to node j as an i − j path.

Lemma 4.3. Let G be the graph of node set V and arc set F .

(i) G is acyclic and does not contain an s − t path or a t − s path.

(ii) For each node i ∈ V \ {s, t} at least one of the following two cases occurs:

case 1: G has neither an s − i path nor a t − i path.

case 2: G has neither an i − s path nor an i − t path.

Proof. The assertion (i) is clear from the fact that x̄ is a maximal flow. Let i be an
arbitrary node and suppose that case 1 of (ii) does not occur, i.e., there is either an
s− i path or a t − i path. If there is an s− i path, we have by (i) that there is neither
an i−s path nor an i− t path, and if there is a t− i path, we see that there is neither
an i − s path nor an i − t path. These correspond to case 2.

Now let a* denote the row of the incidence matrix A of the network defined by
(1.1.1) corresponding to node * ∈ V \ {s, t}. Suppose we are given a nonempty
subset U of V \ {s, t} and let

9+
E(U) = { h | h ∈ E; ∂+h ∈ U ; ∂−h ∈ V \ U }

9−
E(U) = { h | h ∈ E; ∂−h ∈ U ; ∂+h ∈ V \ U }.

Then it will be readily seen from the definition of the incidence matrix that∑
*∈U

a* =
∑

k∈9+
E(U)

ek +
∑

k∈9−
E(U)

(−ek). (4.4.1)

Lemma 4.4. For each h ∈ F it holds that

eh = αh

∑
*∈Vh

a* +
∑
k∈F

βhkek −
∑

k∈E\{h}
γhkek

for some αh ∈ {−1, 1}, Vh ⊆ V \ {s, t}, βhk ∈ {0, 1} and γhk ∈ {0, 1}.
Proof. Let i = ∂+h and j = ∂−h and we consider the following two cases.
case 1: node i satisfies the condition of case 1 of (ii) in Lemma 4.3.
Let

V +
h = { * | * ∈ V ; there is an * − i path of G }.

Then we see from Lemma 4.3 that s, t, j �∈ V +
h and that no arcs of F come into

V +
h from its complement V +

h = V \ V +
h . Therefore the cut (V +

h , V +
h ) consists of

the three sets of arcs: 9+
F
(V +

h ), 9+
F (V

+
h ) and 9−

F (V
+
h ). By (4.4.1) we obtain
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Figure 3. V+
h

and arcs.

∑
*∈V+

h

a* =
∑

k∈9+
F
(V+

h )

ek +
∑

k∈9+
F (V

+
h )

ek +
∑

k∈9−
F (V

+
h )

(−ek),

which is rewritten as, since h ∈ 9+
F
(V +

h ),∑
*∈V+

h

a* = eh +
∑

k∈9+
F
(V+

h )\{h}
ek +

∑
k∈9+

F (V
+
h )

ek +
∑

k∈9−
F (V

+
h )

(−ek).

Thus we obtain

eh =
∑
*∈V+

h

a* +
∑

k∈9−
F (V

+
h )

ek − (
∑

k∈9+
F (V

+
h )

ek +
∑

k∈9+
F
(V+

h )\{h}
ek).

case 2: node i satisfies the condition of case 2 of Lemma 4.3.
Since node i satisfies the condition of case 2 and arc h = (i, j) is in F , node

j also satisfies the condition. Let V −
h = { * | * ∈ V ; there is a j − * path of G }.

Then we see s, t, i �∈ V −
h and that no arcs of F go from V −

h into V −
h = V \ V −

h ,

and the cut (V −
h , V −

h ) consists of 9−
F
(V −

h ), 9−
F (V

−
h ) and 9+

F (V
−
h ). Therefore∑

*∈V−
h

a* =
∑

k∈9−
F
(V−

h )

(−ek) +
∑

k∈9−
F (V

−
h )

(−ek) +
∑

k∈9+
F (V

−
h )

ek

= −eh +
∑

k∈9−
F
(V−

h )\{h}
(−ek) +

∑
k∈9−

F (V
−
h )

(−ek) +
∑

k∈9+
F (V

−
h )

ek.
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Hence

eh = (−
∑
*∈V−

h

a*) +
∑

k∈9+
F (V

−
h )

ek − (
∑

k∈9−
F (V

−
h )

ek +
∑

k∈9−
F
(V−

h )\{h}
ek).

This completes the proof.

Theorem 4.5. For a given maximal flow x̄ there is an integral vector λ ∈ R|E| such
that 1 ≤ λh ≤ |E| for each h ∈ E and x̄ maximizes λx over the set of feasible
flows.

Proof. By Lemma 4.4 we see for each h ∈ F

eh +
∑

k∈E\{h}
γhkek = αh

∑
*∈Vh

a* +
∑
k∈F

βhkek

for some αh ∈ {−1, 1}, Vh ⊆ V \{s, t}, βhk ∈ {0, 1} and γhk ∈ {0, 1}. Adding these
equations over h ∈ F and the identities eh = eh for h ∈ F , we obtain∑

k∈E
λkek =

∑
*∈V \{s,t}

δ*a* +
∑
k∈F

ζkek,

where λk = 1 + ∑
h∈E\{k} γhk for k ∈ E, ζk = ∑

h∈F βhk for k ∈ F , and δ* is
appropriately defined for * ∈ V \ {s, t}. Note that

1 ≤ λk ≤ 1 + (|E| − 1) = |E|
for k ∈ E and ζk ≥ 0 for k ∈ F . Let λ = ∑

k∈E λkek . Then for any feasible flow x

it holds that

λx̄ =
∑
k∈E

λkekx̄ =
∑

*∈V \{s,t}
δ*a*x̄ +

∑
k∈F

ζkekx̄

=
∑
k∈F

ζkx̄k =
∑
k∈F

ζkck

≥
∑
k∈F

ζkxk =
∑

*∈V \{s,t}
δ*a*x +

∑
k∈F

ζkekx = λx,

meaning that the maximal flow x̄ maximizes λx over the set of feasible flows.

Corollary 4.6. |E|2 suffices for M defining # of (2.2.2).

Proof. Let x̄ be a maximal flow. By Theorem 4.5 it maximizes λx over the feasible
flows for some λ ∈ R|E| such that 1 ≤ λh ≤ |E| for each h ∈ E. Let λ̄ =
(|E|2/∑

h∈E λh)λ. Then since |E|2 ≥ ∑
h∈E λh, λ̄ lies in # defined for M = |E|2

and x̄ maximizes λ̄x over the feasible flows.
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Table I. Running time and percentage of NVS procedure

No. of arcs Mean Max. Min. NVS(%)

20 1.07 2.52 0.33 85

24 4.07 8.95 1.26 89

28 6.19 11.14 0.99 94

32 12.89 18.02 6.32 96

36 41.29 87.33 9.22 98

40 42.64 130.00 11.59 97

44 91.16 224.37 17.54 96

48 113.36 393.76 49.87 98

52 166.84 303.68 69.32 97

56 172.63 385.19 78.88 98

60 195.84 357.73 116.55 98

64 344.29 742.43 128.31 97

68 407.18 898.03 216.74 97

72 504.10 1876.04 233.76 97

76 623.54 2430.12 240.30 97

5. Computational Experiment

Since problem (P ) becomes easier to solve as the network becomes sparser, we
fixed the number of nodes to |V | = 16 and varied the number of arcs |E| from
20 to 76 in generating the problem instances. We generated 10 instances for each
number of arcs by randomly choosing arcs from V × V of possible locations, and
also randomly choosing each arc capacity ch from {1, 2, . . . , 10}. The program was
coded in Turbo Pascal and run on DELL Dimension XPS B600r. We employed the
method proposed by Horst et al. [13] to generate the vertex set of epi σWk

.
Each row of Table 1 shows the mean, maximum and minimum of the running

time in second, and the percentage of the time spent by the NVS Procedure in the
total of the running time. We observed a high percentage of the time spent by the
NVS Procedure, however, only one application of the AVS Procedure, followed by
the NVS Procedure, provided global optimum solutions in most of the instances
we solved, in fact 145 instances out of 150. The remaining five instances required
the application of AVS and NVS Procedures only two times each. Note that at least
one application of NVS Procedure is always needed to check the optimality of the
current solution. This result together with the approximate polynomial in Figure 4

Mean of the running time ≈ 0.023(|E| − 16)2.44

expressing the mean running time in terms of the number of arcs should lead to the
conclusion that the algorithm is quite efficient.
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Figure 4. Mean of running time and approximate polynomial.

6. Conclusions

Combining the Adjacent Vertex Search Procedure and the Nonadjacent Vertex
Search Procedure, we have proposed an algorithm for solving the minimum max-
imal flow problem. Owing to the network structure as well as the integrality of
capacities, the algorithm yields a globally optimum solution within a finite num-
ber of iterations. However, we did not fully utilize the favorable properties of the
network structure. In fact, no network algorithms are employed in AVS as well
as NVS Procedures. Research on the application of efficient network algorithms
should be carried out.
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